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Using spinor Gross-Pitaevskii equations, we analyze the dispersion of elementary excitations of a polariton
macro-occupied mode quasiresonantly excited in a microcavity. In a general case, the dispersion contains flat,
purely dissipative parts characteristic for driven-dissipative systems. However, a Bogoliubov-like linear dis-
persion is found when the detuning between the laser energy and the bare energy of the pumped state is exactly
compensated by the interparticle interaction. In this regime, the ensemble of polaritons demonstrates propaga-
tion with zero mechanical viscosity.
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I. INTRODUCTION

Cavity polaritons are elementary excitations of semicon-
ductor microcavities in the strong coupling regime. Being
linear combinations of quantum well �QW� excitons and cav-
ity photons, they possess a number of peculiar properties
which distinguish them from other quasiparticles in mesos-
copic systems and make possible their applications in
optoelectronics.1–5

The presence of the photonic component results in ex-
tremely small effective mass of cavity polaritons6

�10−4–10−5 of the electron mass�, while the excitonic com-
ponent makes possible efficient polariton-polariton
interactions.7 Under nonresonant pumping, this makes pos-
sible the thermalization of the polaritonic system8 and can
result in the Bose-Einstein condensation �BEC� of the
exciton-polaritons9,10 and superfluidity.11–13 Under resonant
pumping, polariton-polariton interactions lead to the possi-
bility of the observation of a variety of intriguing nonlinear
effects such as bistability of the pumped mode14–18 and po-
lariton parametric scattering.17–24

An important property of the cavity polaritons is their
spin, inherited from the spin of the QW excitons. The ground
state of the QW exciton has four possible spin projections on
the structure growth axis: ±1, ±2. According to the selection
rules, the dark states ±2 are not coupled with cavity mode.
On the other hand, the states ±1 are coupled with photons
and thus participate in the formation of the polariton doublet.
They can be created by �+ and �− circularly polarized light,
respectively. A linearly polarized light excites a linear com-
bination of +1 and −1 exciton states, so that the total exciton
spin projection on the structure axis is zero in this case,
while the exciton polarization has a nonzero in-plane projec-
tion.

As the spin of polaritons is directly connected with the
polarization of the emitted photons, the analysis of the latter
is a powerful tool for the experimental investigation of spin
dynamics of cavity polaritons.25–31 The external magnetic
fields together with effective internal magnetic fields of vari-

ous origins lead to the mixing of different polarization com-
ponents of polaritons. At k�0, the circularly polarized com-
ponents are normally mixed by strong TE-TM splitting of the
photonic mode,32,33 which can lead to numerous interesting
phenomena such as the optical spin Hall effect34–36 or the
formation of polarization vortices.37 On the other hand, an-
isotropy of the polariton-polariton interactions contributes to
the mixing of the linearly polarized components.38,39

Namely, the interaction of the polaritons in triplet configura-
tion �parallel spin projections on the structure growth axis� is
different from polaritons in singlet configuration �antiparallel
spin projections on the structure growth axis�. The interplay
between spin and many-body interactions makes spin dy-
namics of the polaritons extremely rich and interesting and
leads to some remarkable nonlinear polarization effects, such
as self-induced Larmor precession �Faraday rotation�27,40,41

and inversion of linear polarization during the scattering
act.42

The goal of the present paper is to analyze the properties
of a semiconductor microcavity under cw pumping, taking
into account both spinor structure of the polaritons and an-
isotropic polariton-polariton interactions. In existing theoret-
ical models, the external field intensity is usually assumed to
be the only driving parameter of the system.17,18 Such an
assumption corresponds to the hypothetical situation of cir-
cularly polarized excitation without any further mixing of
polarization. The description of the elliptical or linearly po-
larized excitation as well as accounting for TE-TM splitting
cannot be carried out within the frameworks of the scalar
model, making necessary the generalization of the model to
take into account the spinor nature of cavity polaritons ex-
plicitly.

In our recent paper, we have extended the scalar semiclas-
sical approach based on the Gross-Pitaevskii equation to ac-
count for two polarization states of resonantly driven cavity
polaritons.43 It was shown that the interplay between the
nonlinearity caused by the polariton-polariton interactions
and the polarization dependence of these interactions results
in a multistability of the driven polariton mode, contrary to
the usual optical bistability for the spinless nonlinear case.
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We demonstrated that under coherent cw pumping at k=0 for
a given polarization of the pump, the polariton polarization
can, in general, take three different values.

In the present paper, we develop the approach proposed in
Ref. 43 to calculate the dispersion of elementary excitations
in a microcavity under resonant pumping. It is well known
that for the system of scalar interacting bosons with infinite
lifetime in thermodynamic equilibrium, the macroscopic oc-
cupation of the ground state leads to the renormalization of
the spectrum of elementary excitations.44,45 In the region
near k=0, the dispersion consists of a linear Bogoliubov
mode E�k�=vsk, indicating the presence of superfluidity with
a critical velocity vs. The spinor nature of cavity polaritons
and their finite lifetime make this picture more
complicated.12,46 Due to the anisotropy of polariton-polariton
interactions, the condensate is expected to be linearly polar-
ized. The dispersion of elementary excitations consists of
two Bogoliubov-like modes with sound velocity depending
on polarization.12

However, experimental measurements of the renormaliza-
tion of the polariton dispersion in the regime of polariton
BEC47 did not reveal the appearance of the Bogoliubov
mode. Instead, the renormalized dispersion was shown to
flatten in the region near k=0. Two alternative explanations
have been given to this observation so far. The first one is
connected with the dynamical nature of the polariton BEC,
where the processes of incoherent pumping and radiative de-
cay compensate each other.48–50 Alternatively, the appearance
of the flat part was explained as resulting from the localiza-
tion of cavity polaritons in disorder potential and phase tran-
sition toward the Bose glass phase.51

In the present paper, we analyze the dispersion of elemen-
tary excitations in a resonantly pumped microcavity. In this
case, the macroscopic occupation of the ground state is
achieved not due to the processes of thermalization but is
built up directly by an external laser beam. The situation is
thus very different from those considered in Refs. 47–49 and
51. The crucial point is that the energy and polarization of
the macroscopically occupied mode are no more determined
by the system itself in order to minimize the free energy but
are rigidly fixed by the frequency and polarization of the
coherent excitation. Consequently, the introduction of the
chemical potential of the condensate is no more possible and
one should expect, in general, that the dispersion of elemen-
tary excitations will differ from Bogoliubov-like modes.
However, we found that for some excitation conditions, the
spectrum of elementary excitations becomes linear and veri-
fies the Landau criterion of superfluidity. These results, in
agreement with the precedent work of Ciuti and Carusotto,11

show that despite of the presence of pumping and decay, the
gas of interacting polaritons in microcavities can form a su-
perfluid. However, this superfluid is composed of radiatively
decaying particles, thus differing from ordinary superfluids.
Only dissipation of momentum by mechanical viscosity is
suppressed, but the particles can still disappear due to the
radiative decay.

This paper is organized as follows. In Sec. II, we intro-
duce the spinor Gross-Pitaevskii equations for resonantly
pumped polaritonic systems. In Sec. III, we obtain analytical
expressions for the dispersions of elementary excitations for

different polarizations of the pump and show the different
possible dispersions. In Sec. IV, we analyze the stability con-
ditions for the system under study. In Sec. V, we discuss the
effects of dispersion renormalization on the emission spectra
of a microcavity in pump-probe experiments.

II. MODEL

To get the dynamic equations for polaritonic field, we
start with the Hamiltonian of the system which in the
exciton-photon basis can be represented in the following
form:

Ĥ =� dx �
j=↑,↓

��̂X
�j�+EX�k̂��̂X

�j� + �̂ph
�j�+Eph�k̂��̂ph

�j��

+ VR �
j=↑,↓

��̂X
�j�+�̂ph

�j� + �̂X
�j��̂ph

�j�+�

+
1

2 �
j=↑,↓

�W1�̂X
�j�+�̂X

�j�+�̂X
�j��̂X

�j� + W2�̂X
�j�+�̂X

�j��̂X
� j̄�+�̂X

� j̄��

+ �
j=↑,↓

�Pj�k�ei�0t�̂ph
�j� + Pj

*�k�e−i�0t�̂ph
�j�+� . �1�

Here, �ph
i �k , t� and �X

i �k , t� are the field operators of the cav-
ity photons and QW excitons with indices describing two

circular polarization states of the emitted light, j= ↑ , ↓ ; ↑̄
= ↓ ; ↓̄=↑. EX�k̂� and Eph�k̂� are the bare energies of excitonic
and photonic modes which can have nonzero imaginary parts
due to their finite lifetimes. VR is a half of the Rabi splitting
and W1 and W2 are effective constants of exciton-exciton
interaction in triplet and singlet configurations respectively.
Pj�k� is the amplitude of the pumping field with in-plane
momentum k and frequency �0.

The first term in Eq. �1� describes the free excitons and
cavity photons, the second term describes linear coupling
between excitonic and photonic modes, the third term de-
scribes exciton-exciton interactions in s-wave approxima-
tion, and the fourth term corresponds to the coupling of the
cavity mode with an external coherent pumping field.

Both exciton and photon are assumed to be ideal bosons,

��̂X
�j�+�x� ; �̂X

�j��x���=��x−x��, the effects of the saturation of
the excitonic resonance thus being neglected. The latter can
be taken into account by renormalization of VR with exci-
tonic density.52,53

Although the formalism we use can be easily generalized
for an arbitrary microcavity excitation geometry, in the
present paper, we assume that the original exciton and pho-
ton modes are twofold degenerate. This is the case for highly
symmetrical microcavities excited by the pump beam normal
to the surface. In the linear regime in such systems, polariza-
tion state of the internal field coincides with that of the
pump, which also gives a good reference in the nonlinear
regime. Note that in realistic microcavities, the cylindrical
symmetry is often broken which results in splittings of the
exciton and photon modes �see Refs. 4, 12, and 47�. We
neglect this effect here.

Using the Heisenberg equation of motion i�t�̂X,ph
�j�

= ��̂X,ph
�j� ; Ĥ� ��=1�, one can obtain the system of four coupled
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nonlinear equations for the excitonic and photonic fields,

�i
�

�t
− Eph�− i � ���ph

�j��x� = VR�X
�j��x� + Pe−i�0t, �2�

�i
�

�t
− EX�− i � ���X

j �x� = VR�ph
�j��x� + �W1	�X

�j��x�	2

+ W2	�X
� j̄��x�	2��X

�j��x� , �3�

where c functions of the bosonic fields were introduced as

�ph,X
�j� �x� = 
�̂ph,X

�j� � . �4�

Passing from Eq. �1� to Eqs. �2� and �3�, we used the
mean-field approximation


�̂X
�j�+�̂X

�j��̂X
�j�� � 	�X

�j�	2�X
�j�. �5�

Equations �2� and �3� correspond to the nonlinear
Schrödinger equation describing the optical media with ��3�

nonlinearity. It should be noted that although it gives an ac-
curate description of the nonlinear properties of quantum mi-
crocavities in the strong pumping regime and accounts for
the stimulated polariton-polariton scattering, certain aspects
of the polariton dynamics, e.g., scattering with acoustic
phonons and spontaneous polariton-polariton scattering, are
not accounted for by Eqs. �2� and �3�. These scattering pro-
cesses can be treated as dissipative perturbations, which can
modify the system dynamics but not its dispersion which we
are interested in.

To make possible the analysis of the response of the sys-
tem, it is convenient to rewrite Eqs. �2� and �3� in the polar-
iton basis. The procedure is as follows. Let us rewrite Eqs.
�2� and �3� in k representation

�i
�

�t
− Eph�k���ph

�j��k� = VR�X
�j��k� + ��k�Pe−i�0t, �6�

�i
�

�t
− EX�k���X

j �k� = VR�ph
�j��k� + W1� �X

�j�*�k��

	�X
�j��k − q��X

�j��k� + q�dk�dq

+ W2� �X
� j̄�*�k���X

� j̄��k − q�

	�X
�j��k� + q�dk�dq , �7�

and then introduce upper and lower polariton amplitudes by
means of the unitary transformation

�LP
�j� �k� = CL�k��ph

�j��k� + XL�k��X
�j��k� , �8�

�UP
�j� �k� = CU�k��ph

�j��k� + XU�k��X
�j��k� . �9�

The coefficients of the transformation �Hopfield coefficients�
are chosen in order to diagonalize the quadratic part of the
Hamiltonian.

The interaction term in the polariton basis looks quite
cumbersome: alongside with terms describing the scattering
of polaritons within the lower polariton branch �LPB� and
the upper polariton branch �UPB�, it contains interbranch

scattering terms. However, it can be simplified if the splitting
between polariton branches �Rabi splitting� is much larger
than the detuning between the energy of the lower polaritons
and the excitation energy. In this case, only the LPB is ex-
cited and the UPB can be neglected.53 In the k representation
for lower polariton field, one obtains the following system of
two coupled nonlinear integral equations:

�i
�

�t
− ELP�k���LP

j �k� =� 
1�k,k�,q��LP
�j�*�k���LP

�j� �k − q�

	�LP
�j� �k� + q�dk�dq

+� 
2�k,k�,q��LP
� j̄�*�k��

	�LP
� j̄� �k − q��LP

�j� �k� + q�dk�dq

+ ��k�Fje
−i�0t, �10�

where

ELP�k� =
EX�k� + Eph�k� − �EX�k̂� + Eph�k��2 + VR

2

2

�11�

is the bare LPB. The effective matrix element of polariton-
polariton scattering reads


1,2�k,k�,q� = W1,2XL
*�k�XL

*�k��XL�k − q�XL�k� + q�
�12�

and the pumping amplitude for LPB polaritons is

Fj = CL�0�Pj . �13�

Going back to the direct space, one obtains the following set
of integral equations:

�i
�

�t
− ELP�k̂���LP

�j� �x� =� U1�x,x�,x�,x���LP
�j�*�x��

	�LP
�j� �x���LP

�j� �x��dx�dx�dx�

+� U2�x,x�,x�,x���LP
� j̄�*�x��

	�LP
� j̄� �x���LP

�j� �x��dx�dx�dx�

+ Fje
−i�0t, �14�

where the kernels U1�x ,x� ,x� ,x�� and U2�x ,x� ,x� ,x�� de-
scribe lower polariton scattering in the direct space,

U1,2�x,x�,x�,x�� =
1

�2��9 � 
1,2�k,k�,q�

	ei�k�x−x��+k��x�−x��+q�x�−x���dkdk�dq .

�15�

Note that due to the complex k,k� dependence of the
Hopfield coefficients XL, polariton-polariton interactions are,
in general, nonlocal in the direct space, U1,2�x ,x� ,x� ,x��
�U1,2�x ,x����x−x����x�−x��. The locality holds only if
polaritons are created in a narrow region around k=0 where

DISPERSION OF INTERACTING SPINOR CAVITY… PHYSICAL REVIEW B 77, 045314 �2008�

045314-3



Hopfield coefficients can be approximated by a constant. In
this case, the dynamics of the polariton system can be de-
scribed by a set of spinor Gross-Pitaevskii equations,12

�i
�

�t
− ELP�k̂����j��x,t� = �
1	��j��x,t�	2

+ 
2	�� j̄��x,t�	2���j��x,t�

+ Fje
−i�0t. �16�

The ratio 
1 /
2 characterizes the anisotropy of the polariton-
polariton interactions. In the isotropic case, 
1 /
2=1. Ac-
cording to theoretical estimations by Ciuti et al.54 for QW
excitons, usually 	
1 	 � 	
2	. From fitting the experimental
data on polarized emission of light from microcavities, this
ratio was estimated as 
1 /
2�−20.56,55

III. DISPERSION OF ELEMENTARY EXCITATIONS

Now, let us find the dispersion of elementary excitations
of an interacting polariton system under a monomode pump-
ing at k=0. In the case of BEC of polaritons with infinite
lifetime at thermal equilibrium, polariton condensate is lin-
early polarized and its spectrum consists of two Bogoliubov-
like branches with slightly different sound velocities.12 How-
ever, in the case of quasiresonant cw pumping and for finite
polariton lifetime, the situation can be qualitatively different.

First, the polarization of the macroscopically occupied po-
lariton mode is not chosen by the system itself but is deter-
mined by the pump. The relation is not, however, straightfor-
ward, as shown in Ref. 43: the anisotropy of polariton-
polariton interactions leads to the deviation of the
polarization of this mode from the polarization of the pump.

Second, the dispersion of elementary excitations differs
strongly from the Bogoliubov-like one. In the scalar model,
the dispersion was shown to contain a flat region near
k=0,17,18,48,50 and one can expect a similar result if spin is
taken into account.

To find the response of the polariton system, we use the
procedure similar to those used in the Refs. 11, 12, 18, and
43. Under the monomode pump at k=0, the solution of the
spinor Gross-Pitaevskii equation can be recast in the follow-
ing form:

�� = e−i�0t��0
� + A� ei�kr−�t� + B� *e−i�kr−�*t�� , �17�

where �� = ��↑ ;�↓�, �0
� is the amplitude of the pumped state

�the macro-occupied mode�, and A� = �A↑ ;A↓� and B�

= �B↑ ;B↓� are the amplitudes of the excitations with wave
vector k and frequency �. Note that the frequency of the
macro-occupied mode �0 in our case is fixed by the pump
and is not determined by the concentration-dependent blue-
shift as in the case of polariton BEC at thermal
equilibrium.12 This is the reason why the dispersions differ
qualitatively in these two cases.

To find the dispersions of elementary excitations, one
should insert Eq. �17� into Eq. �16� and perform the linear-

ization with respect to the excitation amplitudes A� and B� .

The latter means that 	A� 	 , 	B� 	  	�0
�	, assuming that interac-

tions are weak enough and the macro-occupied mode re-
mains weakly depleted. A straightforward algebra gives the

following set of six coupled algebraic equations for �0
� ,A� ,B� :

��ELP�0� − �0 −
i

�
� + �
1	�0

↑	2 + 
2	�0
↓	2���0

↑ + F↑ = 0,

�18�

��ELP�0� − �0 −
i

�
� + �
1	�0

↓	2 + 
2	�0
↑	2���0

↓ + F↓ = 0,

�19�

�ELP�0� − �0 − � −
i

�
+ 2
1	�0

↑	2 + 
2	�0
↓	2�A↑ + 
1�0

↑2B↑

+ 
2�0
↑�0

↓*A↓ + 
2�0
↑�0

↓B↓ = 0, �20�


1�0
↑2A↑ + �ELP�0� − �0 + � +

i

�
+ 2
1	�0

↑	2 + 
2	�0
↓	2�B↑

+ 
2�0
↑*�0

↓*A↓ + 
2�0
↑*�0

↓B↓ = 0, �21�


2�0
↑*�0

↓A↑ + 
2�0
↑�0

↓B↑ + �ELP�0� − �0 − � −
i

�

+ 2
1	�0
↓	2 + 
2	�0

↑	2�A↓ + 
1�0
↓2B↓ = 0, �22�


2�0
↑*�0

↓*A↑ + 
2�0
↑*�0

↓B↑ + 
1�0
↓2A↓ + �ELP�0� − �0 + �

+
i

�
+ 2
1	�0

↓	2 + 
2	�0
↑	2�B↓ = 0, �23�

where � is the lifetime of the cavity polaritons. The first two
of these equations determine the state of the macro-occupied
mode, while the other four yield the dispersions of its el-
ementary excitations. It is easily seen from Eqs. �18� and
�19� that polarization of the pumped mode differs from the
polarization of the pump, in general. Indeed, one has

�0
↑

�0
↓ = −

F↑

F↓

�ELP�0� − �0 −
i

�
� + �
1	�0

↑	2 + 
2	�0
↓	2�

�ELP�0� − �0 −
i

�
� + �
1	�0

↓	2 + 
2	�0
↑	2�

.

�24�

It follows from Eq. �24� that the polarizations of the pump
and the polariton system coincide only in the case of the
circularly polarized pump. On the other hand, for an ellipti-
cal pumping, the polarizations of the polariton system and
the pump can strongly differ. First, due to the effect of the
self-induced Larmor precession,38 the polarization ellipse of
the condensate is rotated as compared to the polarization
ellipse of the pump by an angle which depends on the pump-
ing intensity. Second, the circular polarization degree of the
condensate differs from that of the pump due to the different
blueshifts for right and left circularly polarized components.
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The interplay between the polarizations of the pump and
pumped mode was analyzed in detail in Ref. 43.

Now, let us turn to the analysis of the dispersions of the
elementary excitations of the driven mode. Although corre-
sponding analytical expressions can be obtained in the gen-
eral case of the elliptical polarization, they are quite cumber-
some. These expressions simplify a lot, however, in the case
of the circular and linear polarization of the driven mode.

In the case of a circularly polarized �+ pumping, the el-
ementary excitations are also circularly polarized. The four
dispersion branches are described by the following formulas:

�1,2
↑ = �0 −

i

�
± �ELP�k� − �0 + 2
1n�2 − �
1n�2, �25�

�1
↓ = −

i

�
+ ELP�k� + 
2n , �26�

�2
↓ = 2�0 −

i

�
− ELP�k� − 
2n , �27�

where n= 	�0
�	2

The dependencies of real and imaginary parts of �1,2
↑,↓�k�

are shown in Figs. 1�a� and 1�b� and 2�a� and 2�b�, respec-
tively. Figure 1 shows the flat dispersion at k=0, whereas
Fig. 2 shows the flat dispersion at k�0. The bare polariton
dispersion E0�k� is taken parabolic with a polariton mass
given by mpol=3	10−5m0, where m0 is the free electron
mass. We use 
1=6xEbaB

2 /S, where aB=100 Å is the two
dimensional exciton Bohr radius, Eb=8 meV is the exciton
binding energy, x=1 /4 is the squared exciton fraction, and
S=100 �m2 is the laser spot area. The polariton lifetime is
�=2 ps. These parameters are typical for a GaAlAs micro-
cavity. We take n=1.1	104 ,2.5	103. It is seen from Eqs.

FIG. 1. �Color online� ��a� and �c�� Real and
��b� and �d�� imaginary parts of dispersions of the
excitations in the case of ��a� and �b�� circular
and ��c� and �d�� linear polarizations of the mac-
roscopically occupied mode with a flat part at k
=0.

FIG. 2. �Color online� ��a� and �c�� Real and
��b� and �d�� imaginary parts of dispersions of the
excitations in the case of ��a� and �b�� circular
and ��c� and �d�� linear polarization of the mac-
roscopically occupied mode with a flat part at k
�0.
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�26� and �27� that renormalization of the dispersion of cross-
polarized excitations consists only in the concentration-
dependent shift with respect to the bare dispersion. It re-
mains parabolic with a constant imaginary part given by 1 /�.
This is because polariton-polariton interactions do not mix
the circularly polarized components.

The renormalization of the copolarized dispersion is much
more interesting. It follows from Eq. �25� that its real part is
dipsersionless in the vicinity of the point where ELP=�0
+2
1n. Physically, it means that the renormalized mode is
fully diffusive.

In the case of a linearly polarized driven mode, the el-
ementary excitations are also linearly polarized with disper-
sions given by the following expressions:

�1,2
co = �0 −

i

�

±�ELP�k� − �0 + 
1n + 
2n�2 −
1

4
�
1n + 
2n�2,

�28�

�1,2
cross = �0 −

i

�
±�ELP�k� − �0 + 
1n�2 −

1

4
�
1n − 
2n�2.

�29�

As linear polarizations are mixed by anisotropic
polariton-polariton interactions, the dispersions of both co-
and cross-polarized modes contain flat parts �purely dissipa-
tive regions�. Real and imaginary parts of the dispersions in
the case of linearly polarized mode are shown in Figs. 1�c�
and 1�d� �flat at k=0� and 2�c� and 2�d� �flat at k�0�, re-
spectively. Here, we took n=2.5	104 ,5	103. The differ-
ence in behavior of co- and cross-polarized components is
governed by the value and the sign of 
2. We have consid-
ered a realistic case with 
2=−0.1
1.

IV. STABILITY ANALYSIS

The approach presented above is only valid for a single
macroscopically occupied polariton quantum state. This is
indeed the case if the imaginary parts of the eigenfrequencies
of all excited states are negative. On the other hand, if the
imaginary part is positive for any of the states, the scattering
toward this state becomes stimulated and the state itself be-
comes macroscopically occupied. In this section, we analyze
the stability of the polariton dispersions obtained in the pre-
vious sections. As before, we shall concentrate on two cases,
namely, the circularly polarized mode and the linearly polar-
ized mode. In the further analysis, the most important param-
eter will be the detuning �k=�0−ELP�k�.

A. Circularly polarized mode

For a strictly circular pump, only the coefficient 
1 is
important because the amplitude of the cross-polarized com-
ponent of the polariton state is strictly zero. The driven mode
is circularly polarized. The stability condition in this case
reads

3�
1n�2 − 4�k
1n + �k
2 +

1

�2 � 0. �30�

Therefore, for a given value of �k, the system is unstable
against parametric scattering in the �+k ,−k� states if


1n � � 2
3�

,
2�0 − �0

2 − 3/�2

3
� . �31�

The ground state itself is unstable if


1n � �2�0 − �0
2 − 3/�2

3
,
2�0 + �0

2 − 3/�2

3
� . �32�

The dispersion shows flat parts if the stability condition is
verified and if

3�
1n�2 − 4�k
1n + �k
2 � 0, �33�

which occurs when 
1n� �
�k

3 ,�k�. Therefore, if 
1n is be-
tween 0 and �0 /3, the flat parts are present at nonzero wave
vectors, and if 
1n is between �0 /3 and �0, this flat part is
around k=0. The condition 
1n=�0 yields a linear spectrum.
One should note that this line belongs to the stable region.
All these results are summarized in Fig. 3. We took 1 /�
=1 meV. The figure shows six different regions, two of
which are unstable and four correspond to different types of
dispersions. In region 1, the dispersion shows a flat part at
some nonzero wave vector k �and −k�; in region 2, the flat
part is centered at k=0; line 3 has a Bogoliubov-like disper-
sion �linear at small wave vectors�; region 4 has the original
parabolic dispersion; regions 5 and 6 are unstable against
parametric scattering and the dispersion should be analyzed
by another method.

B. Linearly polarized mode

Here, we consider a linearly polarized macro-occupied
mode. This situation can correspond to different pumping
polarizations, including, but not limited to, the linear polar-

0 1 2 3 4 5
0

1

2

3

4

5

α
1
n (meV)

D
et

un
in

g
(m

eV
)

1

2 3 4

5
6

FIG. 3. �Color online� Regions of stability for the circularly
polarized mode: �1� flat part of the spectrum for �+k ,−k� states, �2�
flat part of the spectrum for k=0, �3� linear spectrum in k=0, �4�
parabolic spectrum, �5� instability of the �+k ,−k� states, and �6�
instability of the ground state.
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ization. The stability of the system requires the following
conditions to be fulfilled:

1

�2 + �k
2 − 2�k
1n + n2�
1

2 −
�
1 − 
2�2

4
� � 0, �34�

1

�2 + �k
2 − 2�
1 + 
2��kn + n2�
1

2 + 
2
2 −

�
1 + 
2�2

4
� � 0.

�35�

These two conditions are equivalent if 
2=0. If 
2 is posi-
tive, the condition of stability of the component copolarized
with the macro-occupied mode is the strictest, and therefore
it is sufficient to check only this condition. If 
2 is negative,
which is the realistic case, the condition on the cross-
polarized component becomes stronger. This conclusion
agrees well with the current understanding of the spin-
dependent polariton-polariton scattering. Indeed, it agrees
with the fact that two polaritons of a given linear polarization
will scatter preferentially toward cross-polarized polariton
states if 
2 is negative and copolarized if 
2 is positive.38

Therefore, in the case of negative 
2, elementary excitations
of the macro-occupied mode are mainly cross polarized and
their stability governs the stability of the whole system. In
what follows, we study only the realistic case and check the
stability of the cross-polarized component. The system is al-
ways stable if

�k � �min =
1

�
4


1
2

�
1 − 
2�2 − 1. �36�

Above this value, the stability region is limited by the values

n± =

1�k ± 1/2�
1 − 
2��k

2 − �min
2


1
2 − 1/4�
1 − 
2�2 . �37�

States with finite wave vectors show flat dispersions on the
range

n � �0,
�0�
1 + 
2�

2
1
2 − 1/2�
1 − 
2�2� �38�

and the k=0 state has flat dispersion on the range

� �0�
1 + 
2�
2
1

2 − 1/2�
1 − 
2�2 ,
�0�3
1 − 
2�

2
1
2 − 1/2�
1 − 
2�2� . �39�

The flat dispersion for the copolarized component occurs in
the range

��0
�
1 + 
2� − 2
1
2 + 1/4�
1 + 
2�2


1
2 + 
2

2 − 1/4�
1 + 
2�2 ;

�0
�
1 + 
2� + 2
1
2 + 1/4�
1 + 
2�2


1
2 + 
2

2 − 1/4�
1 + 
2�2 � . �40�

The result is plotted in Fig. 4. This figure is more com-
plicated than Fig. 3 because both co- and cross-polarized
components can show different types of dispersions. In re-
gion 1, the dispersion shows a flat part at some nonzero wave
vector ±k �this applies to both polarizations, as demonstrated
by Fig. 1�c��; in regions 2 and 2�, the flat part is centered at

k=0 �the prime corresponds to the cross-polarized compo-
nent�; lines 3 and 3� have the Bogoliubov-like dispersion,
which takes place at different conditions for the co- and
cross-polarized components; region 4 has an ordinary para-
bolic dispersion; regions 5 and 6 are unstable. It is important
to underline that the results shown here have been obtained
for the linearly polarized macro-occupied polariton mode43

and not necessarily for a linearly polarized pumping.

V. EFFECT OF THE RENORMALIZATION OF
POLARITON DISPERSION ON THE EMISSION

SPECTRA OF MICROCAVITIES

The renormalization of the dispersion of elementary exci-
tations of microcavity under resonant pumping obtained and
analyzed analytically in the previous sections can be illus-
trated by the emission spectra in the pump-probe geometry.
We perform numerical simulation of such an experiment us-
ing the coupled Gross-Pitaevskii equation for excitons and
Schrödinger equation for photons taking into account their
polarization12 which are solved in time domain. The polar-
iton lifetime is taken equal to 1 ps. The circularly polarized
pump is spatially homogeneous and detuned by 2.5 meV
from the bottom of the low polariton branch. A weak probe
of 0.1 ps duration and 1 �m spatial size is sent 15 ps after
the pump is turned on. This probe should excite a large part
of the excitation dispersion. The photon component of the
wave function obtained as a solution of the above mentioned
equations is Fourier transformed over 100 ps to find the dis-
persions. Figure 5 shows resulting dispersions obtained by
increasing the pump intensity. Figure 5�a� shows dispersion
with flat regions at ±2 �m−1 �region 1 of Fig. 3�. One can
see the bright emission spots due to the renormalization of
the imaginary part of the dispersion. Figure 5�b� shows flat
dispersion centered at k=0 �region 2 of Fig. 3�. Figure 5�c�
shows the Bogoliubov-like dispersion linear at small wave
vectors �line 3 of Fig. 3�. Finally, Fig. 5�d� shows the para-
bolic dispersion corresponding to region 4 of Fig. 3. This

0 1 2 3 4 5
0

1

2

3

4

5

D
et

un
in

g
(m

eV
)

α
1
n (meV)

1

2
2’

3
3’

44’

5

6

1’

FIG. 4. �Color online� Regions of stability for the linearly po-
larized mode: �1� flat part of the spectrum for �+k ,−k� states, �2,2��
flat part of the spectrum for k=0, �3,3�� linear spectrum in k=0,
�4,4�� parabolic spectrum, �5� instability of the �+k ,−k� states, and
�6� instability of the ground state.
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gives a full set of different types of dispersions of excitations
that can be obtained in a quasiresonantly driven system of
polaritons, described above by analytical means.

The linear spectrum of the mode copolarized with an ex-
citation means that one can expect the appearance of super-
fluidity in the resonantly driven system. However, this result
holds only if the processes of the relaxation of circular po-
larization �e.g., TE-TM splitting� are nonrelevant. Indeed, the
latter will lead to the transitions between two circularly po-
larized branches. As the cross-polarized branch always re-
mains parabolic and lies below the copolarized branch, the
interbranch transitions induced by spin relaxation will lead to
the suppression of superfluidity according to the Landau cri-
terion. This corrects the previous result of Carusotto and
Ciuti11 obtained for the case of spinless cavity polaritons.

The direct proof for superfluidity of a liquid can be ob-
tained only in propagation experiments which would show
zero viscosity �no dissipation�. In order to reveal the super-
fluid regime for the ensemble of exciton polaritons, we have
modeled the propagation of a Gaussian-shape repulsive po-
tential fluctuation �defect� of 7 �m diameter and 10 meV
amplitude propagating at a speed of 5 �m /ps through the
polariton condensate in two regimes: �1� when the pumping
is such as to make the polariton dispersion parabolic at k
=0 �Fig. 5�d�� and �2� when the pumping is chosen to pro-
vide a linear dispersion of excitations in the vicinity of k
=0 �Fig. 5�c��. The results are shown in Fig. 6. If the disper-
sion is parabolic �Fig. 6�a��, the propagation of the defect
induces the supplementary excitations leading to the polar-
iton density waves. They are visible about 50 �m away from
the defect, even though the lifetime in the system is quite
short �1 ps�. However, if the pumping intensity is chosen to
yield the linear dispersion �Fig. 6�b��, no density waves are
seen even in the vicinity of the defect. This is a clear indi-
cation that the polaritons are not perturbed by the motion of
a defect, and therefore the moving body does not lose its
energy by interaction with the polaritons. This is character-
istic for the dissipationless propagation of a body through a

superfluid. We have checked also that the total density of
polaritons does not depend on the fact whether the defect is
moving or not, in the case the linear dispersion. As the en-
ergy lost by the system per a unit of time is directly propor-
tional to the density of polaritons in the system, this confirms
that there is no additional dissipation linked with the motion
of the object.

From the experimental point of view, it would be interest-
ing to work with the linearly polarized probe orthogonal to
the pump. In this configuration, it should be easier to detect
the system response to a weak probe.

VI. CONCLUSIONS

In conclusion, we have analyzed the response of a micro-
cavity to a coherent cw pump taking into account the polar-
ization degree of freedom. The dispersion of a pumped cav-
ity mode is, in general, different from the linear Bogoliubov-
like dispersion characteristic for systems of weakly
interacting bosons. This is a consequence of the fact that our
resonantly driven system is out of thermal equilibrium. The
dispersion can show flat diffusive regions at nonzero wave
vectors or at k=0. The linear Bogoliubov-like dispersion can
be recovered at some particular conditions, namely, when the
blueshift exactly compensates the detuning. This result is
important since it proves that the finite lifetime of the par-
ticles involved is not, in principle, an obstacle to the genera-
tion of a superfluid. We have performed an analysis of the
stability of the macro-occupied mode in the cases of circular
and linear polarizations. The numerical simulations in the
pump-probe geometry demonstrate four different types of
dispersions for the excitations of the macro-occupied mode.
In the case of a linear dispersion, the polaritons form a ra-
diatively decaying superfluid, showing a vanishing mechani-
cal viscosity.
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